목록전체 글 (252)
Joonas' Note
이전 글 - [딥러닝 일지] Conv2d 알아보기 오류 메시지 VGG 같은 모델을 사용하기 위해 허브에서 불러올 때 아래처럼 연결되지 않는 경우가 있다. import torchvision model = torchvision.models.vgg16_bn(pretrained=True) Downloading: "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth" to /root/.cache/torch/hub/checkpoints/vgg16_bn-6c64b313.pth --------------------------------------------------------------------------- gaierror Traceback (most recent..
이전 글 - [딥러닝 일지] 데이터 늘리기 (Data Augmentation) Convolution 2D 이미지를 다루는 딥러닝에서 핵심적인 요소로 쓰이고 있다. 이걸 쌓은 네트워크가 CNN. 학습 데이터로 들어가는 텐서는 아래와 같이 벡터 덩어리(?)의 모습이므로, 오른쪽의 RGB 이미지도 왼쪽과 같은 (3, 4, 4) 크기의 텐서가 된다. 하지만 같은 이미지를 조금만 회전해도 배열의 순서가 완전히 다른 모습이 되기 때문에, 학습하려는 그래프의 입장에서는 의미있는 특징(feature)들을 뽑아내기 힘들어진다. 이미지는 그 특성상, 인접한 픽셀끼리 뭉쳐서 해석하는 것이 어떤 의미를 가질 수 있다고 생각한 접근이 아닐까한다. 필터, 커널 그렇다면 덩어리 단위로 묶어주는 작업이 필요한데, 이것은 슬라이딩 윈..
이전 글 - [딥러닝 일지] 이미지 가지고 놀기 (변환하기) Data Augmentation 용어로는 Data Augmentation. 데이터 증강, 데이터 첨가라고도 부르는 것 같은데, 데이터를 뻥튀기하는 것이다. 이미지에서는 어렵지 않게 데이터를 늘릴 수 있다. 이전 글에서 알아본 방법으로, PIL 이미지와 torchvision.transform의 내장 함수들로 의미있는 부분들만 적당히 유지해주면서, 이미지를 회전하거나 작게 줄이거나 일부를 가리거나 색조를 변경시키는 등의 방법으로 여러 개의 복제된 이미지를 만들 수 있다. 특히, 이미지의 경우에는 방향을 뒤집기(flip)만 해도 Tensor 내의 값들이 전부 바뀌기 때문에, 같은 데이터로 과적합도 막을 수 있다. 가위바위보 이번에는 가위바위보 데이터..
이전 글 - [딥러닝 일지] 다른 모델도 써보기 (Transfer Learning) 오늘은 다음 주제를 다루는 과정에서, 이미지를 여러 방법으로 조작하는 것에 대해서 알아보았다. PIL 먼저, 파이썬에서는 이미지 라이브러리로 PIL(Python Imaging Library) 패키지가 매우 많이 쓰이는 것 같다. 많이 쓰이는 만큼, NumPy와 Tensor와도 호환되는 만들어주는 함수들이 있어서 자주 쓰는데 헷갈린다. 그래서 아래처럼 정리했다. from torchvision.transforms.functional import to_pil_image def pil_to_tensor(pil_image): # PIL: [width, height] # -> NumPy: [width, height, channel]..
반응형이면서 심플했던 티스토리 기본형 #2를 사용하고 있었다. 오랫동안 사용했는데, 갑자기 몇 가지 고치고 싶은 부분이 생겼다. 왼쪽에 블로그 제목이 너무 큰 부분을 차지하고 있어서, 글에 집중할 수 있는 스킨으로 변경했다. 글 목록 변경 전 변경 후 검색 아이콘도 오른쪽으로 옮겼다. 사이드 바 펼치기 변경 전 변경 후 게시글 옆에 자동 목차 최근에 만들어지는 블로그 플랫폼에서는 목차를 자동으로 생성해주는 기능들이 있다. 간단히 만들어서 적용했다. 클릭하면 해당 제목으로 연결되는 것 까지 구현 완료. 변경 전 변경 후
이전 글 - [딥러닝 일지] 학습 조기 종료 (Early Stop) [딥러닝 일지] 학습 조기 종료 (Early Stop) 이전 글 - [딥러닝 일지] 과적합 문제, 그리고 배치 전략 [딥러닝 일지] 과적합 문제, 그리고 배치 전략 (교차 검증) 이전 글 - [딥러닝 일지] 이진 분류를 위한 CNN 모델 작성 (개 vs 고양이) [딥러닝 blog.joonas.io 들어가기 전에 이번에 하려던 것을 하기 위해 검색을 많이 해봤는데, 관용적으로 부르는 건지 실제 용어 정의가 있는 지는 모르겠다. 전이 학습(Transfer Learning)이라고도 부르고, 파인 튜닝(Fine Tuning)이라고도 부르는 것 같은 데, 찾아보기로는 다음과 같은 미묘한 차이가 있다. 전이 학습(Transfer Learning)은..
이전 글 - [딥러닝 일지] 과적합 문제, 그리고 배치 전략 [딥러닝 일지] 과적합 문제, 그리고 배치 전략 (교차 검증) 이전 글 - [딥러닝 일지] 이진 분류를 위한 CNN 모델 작성 (개 vs 고양이) [딥러닝 일지] 이진 분류를 위한 CNN 모델 작성 (개 vs 고양이) 이전 글 : [딥러닝 기록] 시작하기 - 개 vs 고양이 분류 [딥러닝 blog.joonas.io 이번 글은 Version 26을 기준으로 설명한다. Dogs vs. Cats Classification Explore and run machine learning code with Kaggle Notebooks | Using data from multiple data sources www.kaggle.com 적당할 때 끝내기 실험을 ..
이전 글 - [딥러닝 일지] 이진 분류를 위한 CNN 모델 작성 (개 vs 고양이) [딥러닝 일지] 이진 분류를 위한 CNN 모델 작성 (개 vs 고양이) 이전 글 : [딥러닝 기록] 시작하기 - 개 vs 고양이 분류 [딥러닝 기록] 시작하기 - 개 vs 고양이 분류 딥러닝을 공부하면서, 헷갈리는 내용이나 앞으로 알아봐야 할 내용들을 블로그에 정리하기로 blog.joonas.io 정확도를 높이고 싶다!! 개와 고양이를 더 잘 구분하고 싶었다!! 나의 욕망은 무리한 삽질의 반복만 낳았다. 이전에 작성했던 MLP 모델의 네트워크에서 Convolution의 커널(kernel) 크기도 바꿔보고, stride 크기도 바꿔보고, 뒤 쪽 classifier에서 drop out도 해보고.. 이것 저것 해보았지만 결과는..